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A B S T R A C T

Rice is consumed by more people than any other grain. Globally, Vietnam is one of the largest exporters of rice,
with the majority of production occurring in the tropical, low-lying Mekong River Delta. Agriculture in the
Mekong River Delta is susceptible to yield losses from rising temperatures, sea level rise, and land use change as
urban expansion replaces productive farmland. Most studies that assess climate change impacts to rice paddy
yields are conducted at global- or continental-scales, and use general information on management practices to
simulate production. Here, we use management information from farmers and published information on soils
collected in Can Tho, a centrally-located province in the Mekong Delta. These data, along with projected mid-
century (2040–2069) climate data for the RCP4.5 and RCP8.5 greenhouse gas emissions scenarios, are used to
drive the Decision Support System for Agrotechnology Transfer (DSSAT) platform to project future rice paddy
yields using the CERES-Rice model. The results indicate that yields decline for all three rice-growing seasons in
Can Tho city for both emissions scenarios when CO2 fertilization is not considered (5.5–8.5% annually on
average depending on the emissions scenario). Increasing irrigation and fertilizer did not offset these losses, but
simulated CO2 fertilization did compensate for yield declines caused by increasing temperatures (yields were
modeled to be up 23% higher when CO2 fertilization is considered). However, we caution that estimated yield
gains from CO2 fertilization are optimistic, and these modeled values do not consider rises in ozone, which can
diminish yields. Continued and future dam construction could negatively affect agriculture in the region, and
current government policies prohibit rice paddy farmers from diversifying their livelihoods to adapt to these
changes. Monitoring rice agroecosystems at a fine-scale, as this study does, is necessary to best capture the
impact that varying management practices can have on local yields. When these differences are captured, future
impacts of climate change can be modeled more effectively so that local policymakers can make informed
decisions about how to offset yield losses and use farmland more efficiently.

1. Introduction

Earth's climate is rapidly changing, and alterations to global pre-
cipitation, temperature, and CO2 regimes will likely have significant
impacts on agricultural production. For example, the frequency and
intensity of extreme heat is expected to rise (Luber & McGeehin, 2008),
which could damage global food systems (Battisti & Naylor, 2009).
While C3 crops such as rice, wheat and soybean may benefit from in-
creasing levels of CO2, it is not yet clear whether the potential benefits
will outweigh the detrimental impacts from rising temperatures (Long,
Ainsworth, Leakey, & Morgan, 2005; Peng et al., 2004; Rosenzweig &

Parry, 1994; Schmidhuber & Tubiello, 2007). Both droughts and floods
are also anticipated to increase in frequency and intensity in the coming
decades due to climate change, which could depress yields (Barnabás,
Jäger, & Fehér, 2008; Rosenzweig, Iglesius, Epstein, & Chivian, 2001).
To plan for and adapt to a changing climate, we need to explore how
potential climate scenarios could impact different food-producing re-
gions.

By 2050, a 100–110% increase in crop production is needed to
sustain the global population (Tilman, Balzer, Hill, & Befort, 2011). An
additional 2.7–4.9 million hectares (ha) of land per year would need to
be converted to cropland to meet increasing production demands in the
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future (Lambin & Meyfroidt, 2011). Agricultural expansion is often
detrimental to fragile ecosystems, given that much of the potentially
suitable agricultural land that is not already under cultivation lies in
tropical rainforests (Ramankutty, Foley, Norman, & McSweeney, 2002).
For food production to meet demand, yields must increase wherever
possible, but not at the expense of other ecosystems. This could be
achieved through continued plant breeding and by implementing better
management practices that enhance production while minimizing
cropland expansion (Tilman, Cassman, Matson, Naylor, & Polasky,
2002).

While climate change will affect agricultural production globally,
rice (Oryza sativa) production is particularly important to model be-
cause rice feeds more people than any other staple food item (Maclean,
Dawe, Hardy, & Hettel, 2002). Past studies have produced mixed results
on how rice will respond to future climate change. While increasing
nighttime temperatures have been associated with declining rice yields
(Peng et al., 2004), some model results have suggested that CO2 ferti-
lization, which is the process by which rising atmospheric CO2 levels
can increase plant productivity (for a full discussion, see Kimball,
1983), will offset yield losses from rising temperatures (Bachelet & Gay,
1993; Erda et al., 2005; Gerardeaux, Giner, Ramanantsoanirina, &
Dusserre, 2011). Other data have shown that any declines in future rice
yields will be more dramatic at low latitudes compared to mid- and
high-latitudes, because low-latitude production regions have warmer
baseline temperatures, leading to greater heat stress for rice under fu-
ture warming (Rosenzweig & Parry, 1994). Previous studies on the
impacts of climate change on rice production and yields have been
conducted on regional (Mall & Aggarwal, 2002; Matthews, Kropff, &
Horie, 1997; Wassmann et al., 2009; Zhang & Tao, 2013) or global
scales (Chen, McCarl, & Chang, 2011), or have focused on areas that are
not necessarily important to global rice markets (Basak, Ali, & Islam,
2010; Fukai, 1999; Gerardeaux et al., 2011; Mahmood, Meo, Legates, &
Morrissey, 2003; Subash & Ram Mohan, 2012). This study focuses on

climate change impacts on rice in the Mekong River Delta, which is one
of the world's most important rice-producing regions.

Vietnam provides a particularly interesting case study for examining
how rice may respond to climate change. As a result of economic re-
forms targeting the agricultural sector in the late 1980s, Vietnam has
become one of the world's largest exporters of rice, growing 90% of
exported rice in the Mekong River Delta (Thanh & Singh, 2006;
Wassman et al., 2010). The low-lying geography of the region leaves it
vulnerable to sea level rise, salinity intrusion, and storm surge
(Wassmann, Hien, Hoanh, & Tuong, 2004). Rising temperatures could
have widespread and detrimental ramifications for rice production,
which is the predominant land cover in a region where 65% of the
income share comes from farming activities (Pandey, Paris, & Bhandari,
2010). People around the globe depend on the rice grown in the Me-
kong River Delta to supplement their diets, and the livelihoods of those
who live in the delta rely on rice paddy farming. Despite these facts,
there has been little research to quantify how the region will respond to
future climate scenarios even though it faces acute threats from climate
change.

With these issues in mind, the work presented here uses field-scale
data to support modeling that examines how climate change could
impact yields in the Mekong River Delta. The overarching goal of this
paper is to assess how climate change and increasing CO2 levels could
impact rice paddy production, and how management practices could
affect future yields. Specifically, this research aims to answer two re-
search questions:

(1) How much will future climate change increase or decrease yields
under projected climate scenarios in Can Tho city?

(2) Can different management strategies, such as increased irrigation or
fertilizer application, mitigate climate-related impacts?

To answer these questions, we use the Crop Environment Resources

Fig. 1. The study area, Can Tho province. The area under rice cultivation (circa 2010) is shown for Can Tho and its neighboring provinces (Kontgis, Schneider, &
Ozdogan, 2015).

C. Kontgis et al. Applied Geography 102 (2019) 71–83

72



Synthesis (CERES) rice model within the Decision Support System for
Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2010; Jones
et al., 2003) modeling platform. First, the model was parameterized and
validated using field-collected data on farmer management practices in
Can Tho city, historical weather data, and census-reported values of
rice paddy yields. Next, mid-century climate scenarios were used to
determine the impacts of changing temperature and CO2 concentrations
on rice paddy yields. Finally, irrigation and fertilizer practices were
altered to examine the ability of farmers to increase future yields with
field-level decision-making. By answering these questions, this work
aims to provide a deeper understanding of how climate change may
affect the future of rice paddies, and, in turn, the future of rice paddy
farmers in the Mekong River Delta. Here, we tie a global phenomenon –
climate change – to a specific location to provide insights on how local
systems will change in coming decades, as well as potential ways to
adapt to that change.

2. Study area

This research focuses specifically on Can Tho city in the Vietnamese
Mekong River Delta (VMD) region in southern Vietnam (Fig. 1). The
city was formed in 2004, when the former Can Tho province split into
two provinces: the current Can Tho city and Hau Giang province. Can
Tho is a landlocked city that is centrally located in the delta and bor-
dered by five other provinces. The province is subdivided into five
urban districts (Binh Thuy, Cai Rang, Ninh Khieu, O Mon, and Thot
Not) and four rural districts (Co Do, Phong Dien, Thoi Lai, and Vinh
Thanh). The Hau River, a distributary of the Mekong, runs along the
northeastern border of Can Tho city, separating it from Vinh Long and
Dong Thap provinces. In the VMD, the weather is driven by the East-
Asian summer monsoon, resulting in a dry season from December to
late April and a rainy season from May to November. During the rainy
season, the nine distributaries of the Mekong flood the delta from the
end of September until late October or early November. Annual rainfall
in the VMD averages nearly 2000mm, with warm temperatures year
round (20 °C - 35 °C).

In Vietnam, the Mekong Delta is home to>17 million people, re-
presenting 20% of Vietnam's population, and has a population density
of 429 persons km−2 (General Statistics Office of Vietnam, 2011a). The
majority of the delta's land area is devoted to agriculture, with rice
paddy as the predominant crop (General Statistics Office of Vietnam,
2011b). As of 2012, 65% (or 93,062.4 ha) of Can Tho's total land area
was rice paddy, and 98% of these fields were harvested two to three
times per year (Kontgis et al., 2015). The VMD is one of the only places
in the world that has the technology, labor force, and climate to pro-
duce three crops of rice annually, allowing Vietnam to export over 6.5
million tons of rice per year (USDA Foreign Agricultural Service, 2015).
The three growing seasons are: (1) winter-spring (đông xuân), which is
planted in mid-November and harvested in February; (2) summer-au-
tumn (hè thu), which is planted in mid-March and harvested in late
June/early July; (3) autumn-winter (mùa thu), which is planted in mid-
July and harvested in October. For each season, planting and harvesting
dates are approximate and can vary year-to-year based on weather or
management decisions. Both the physical and human dimensions of the
Mekong geography make it a unique case study to examine both the
geopolitical and physical impacts of climate change. Because the region
is so densely populated and intensively farmed, ongoing changes in the
delta affect farmer livelihoods, rice profitability, and the sustainability
of a globally-important agro-ecosystem.

3. Methods

3.1. Modeling rice

For these analyses, we used DSSAT to run the CERES-Rice model,
which is capable of simulating the growth of both dry-sown and hand-

transplanted rice crops, and also adjusts for ‘transplanting shock’ on
crop growth duration (Amien, Redjekiningrum, Kartiwa, &
Estiningtyas, 1999; Singh, Ritchie, & Godwin, 1993). In addition, the
rice module is capable of calculating water uptake under flooded and
non-flooded conditions, and is designed to account for the effects of
nitrogen-deficiency on photosynthesis and crop development (Amien
et al., 1999). The daily rate of photosynthesis is calculated using daily
accumulated solar radiation, day length, the light extinction coefficient
within a canopy, light transmittance through a leaf, and leaf area index
(Saseendran et al., 1998). Leaf area index is generated within CERES-
Rice (rather than input into the model) based on phenological devel-
opment of the plant as determined by growing degree day (GDD) ac-
cumulation (Mahmood et al., 2003). CERES-Rice uses the radiation use
efficiency (RUE) approach to calculate net biomass production, and the
impacts of rising CO2 levels on RUE are modeled using curvilinear
multipliers (Allen et al., 1987; Kim, Ko, Kang, & Tenhunen, 2013; Peart,
Jones, Curry, & Boote, 1989). Specifically, RUE is calculated as follows
(Allen et al., 1987):

=
×

+

+RUE R CO
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where Rm is the asymptotic response limit of (R-Ri) at high CO2 con-
centrations, R is the yield value, CO2 is the carbon dioxide concentra-
tion, Ri is the intercept on the y-axis, and Km is the value of the sub-
strate concentration (e.g. CO2) when (R-Ri)= 0.5 Rm.

This model has been tested in other Southeast and East Asian study
areas where it has been used to predict rice yields and model water use
efficiency, nitrogen use efficiency, plant phenology, and evapo-
transpiration rates (Cheyglinted, Ranamukhaarachchi, & Singh, 2001;
Kim et al., 2013; Mahmood et al., 2003; Zhang & Tao, 2013). Further,
comparative modeling studies have found that CERES-Rice is capable of
simulating rice development more accurately than other rice crop
models when the mean temperature is above the optimum temperature
for rice (28–32 °C) (Wikarmpapraharn & Kositsakulchai, 2010; Zhang &
Tao, 2013). DSSAT and CERES-Rice require three main categories of
input variables: (1) weather, (2) crop management, and (3) land sur-
face. Each of these input variables is discussed in detail below.

3.1.1. Weather data
In this study, we relied on two widely-used climate datasets: the

NASA Prediction of Worldwide Energy Resources (POWER) database
(Stackhouse, 2006) and the Agricultural Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA) (Ruane, Goldberg,
& Chryssanthacopoulos, 2015, Ruane, Winter, McDermid, & Hudson,
2015). POWER data is available from 1983 to present day, while Ag-
MERRA is available from 1980 to 2010. For model calibration, we
needed weather data from recent years (2004–2013) to correlate our
modeled rice yields with available census data on rice yields for the
study area. Since only the POWER database provides weather data for
years after 2010, it was used to calibrate the model. This database
provides daily maximum temperature (Tmax), minimum temperature
(Tmin), solar radiation, relative humidity, wind speed, and precipitation
data at a 1° spatial resolution, and has been used previously for DSSAT
studies (White, Hoogenboom, Stackhouse, & Hoell, 2008).

To generate future climate scenarios, 30 years of present day cli-
mate (1980–2010) at a daily temporal resolution were used as a base-
line for projections. We used AgMERRA for this because its data extend
back to 1980. The AgMERRA climate forcing dataset was designed for
the Agricultural Modeling Intercomparison Project (AgMIP) and other
agricultural impact assessments (Ruane, Goldberg et al., 2015, Ruane,
Winter et al., 2015). These data provide daily Tmax, Tmin, solar radia-
tion, relative humidity, wind speed, and precipitation data at a 1/4°
spatial resolution. To approximate atmospheric forcing data for all lo-
cations between 1980 and 2010, AgMERRA data combines information
from a retrospective analysis of daily resolution climate data with in
situ and remote sensing observations of temperature, precipitation, and
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solar radiation (Ruane, Goldberg et al., 2015, Ruane, Winter et al.,
2015). The AgMERRA distribution of values for Tmax, Tmin, and pre-
cipitation follows the same pattern as the POWER data, though Ag-
MERRA has slightly higher temperature values (Fig. 2). Because Ag-
MERRA was used to model yields under both present day and future
climates, we do not expect this difference to significantly affect our
results.

We modeled impacts to rice paddy for the mid-21st century
(2040–2069) time period under two different emission scenarios drawn
from the most recent Intergovernmental Panel on Climate Change
(IPCC) assessment (AR5) (Collins et al., 2013). These scenarios are
based on the total predicted radiative forcing by 2100 compared to pre-
industrial levels, and are called representative concentration pathways
(RCP). We analyzed future climate data under the medium-low emis-
sion scenario RCP4.5 (+4.5 W m−2 radiative forcing) and the high-
emission scenario RCP8.5 (+8.5 W m−2 radiative forcing). To project
mid-century climate data for these two scenarios, we employed AgMIP
climate scenario generation tools (Ruane, Goldberg et al., 2015, Ruane,
Winter et al., 2015), which generate future daily climate data for 20
different global circulation models (GCMs) (Table 1). All GCMs are
driven with bias-corrected climate forcings, and the covariances be-
tween Tmax, Tmin, and precipitation are preserved from the baseline
AgMERRA data (Hempel, Frieler, Warszawski, Schewe, & Piontek,
2013; Rosenzweig et al., 2014). Essentially, the AgMIP tool simply
shifts the baseline (1981–2010) pattern of Tmax, Tmin, and precipitation
to different degrees depending on the GCM and RCP scenario (Fig. 3).

3.1.2. Crop management data
For crop management, DSSAT requires the user to input (1) crop

planting date, (2) planting method, (3) density at planting, (4) density
at emergence, (5) soil nutrient fertilization (as opposed to fertilization
that might occur from rising atmospheric CO2 concentrations, as dis-
cussed in Kimball, 1983) rates and dates, and (6) irrigation amounts
and dates. To gather these data for our study area, we met with farmers
throughout Can Tho city to learn about their planting practices, and
also gathered information from government offices in the city capital,
Ninh Kieu district, during a field visit in March of 2015. Specifically,
farmers shared information about their management practices, in-
cluding fertilizer application and irrigation practices, what rice variety
they planted, and rice phenology. For phenology, farmers provided
approximate information for each growing season (winter-spring,
summer-autumn, autumn-winter) on when rice was planted, when it
emerged, when it reached its maximum height, and when it was har-
vested. During the calibration process, only planting dates were varied
in order for yields to better match census values. All other management
parameters (e.g., variety, fertilizer timing/rates, irrigation timing/rates,
planting method, density at planting/emergence) were held constant.
Once calibrated (explained in section 3.2), the mean planting date for
the 10-year calibration period (2004–2013) for each respective season
was used for all model runs. All other management parameters were the
same as in the calibration (Table 2).

3.1.3. Land surface data
The DSSAT model requires information on the soil type and prop-

erties of the study area. Soil information for Can Tho city came from
published sources and information gathered during the March 2015
field visit (Khuong, Huan, Tan, & Hung, 2011; Watanabe et al., 2009)
(Table 3). Can Tho is characterized by alluvial soils with a high con-
centration of organic matter due to the annual flooding of the Mekong
River, which occurs during the rainy season (May–November)
(Dobermann et al., 2002).

3.2. Model calibration

We calibrated the model using annual yields reported by the
Vietnamese government (General Statistics Office of Vietnam, 2011b)
in conjunction with the field-collected data on crop management, land
surface, and weather. The census only provides yield information on
winter-spring and summer-autumn rice paddy yields, and each of these
growing seasons was calibrated independently. The model performed
particularly well for the winter-spring season (Fig. 4A), but estimated
higher yields than the census reported for the summer-autumn season
(Fig. 4B). However, information from farmers and government officials
led us to believe that yields for summer-autumn rice paddy were ac-
tually higher than what the census reports. Farmers estimated that
summer-autumn yields were around 7000 kg/ha, while government
officials suggested a value closer to 6000 kg/ha. Both farmers and of-
ficials also noted that recent winter-spring yields were the same as
census-reported yields. No census information is provided for the au-
tumn-winter growing season, so we compare relative trends of this
season against the other two seasons based on information obtained
during interviews. As suggested in the interviews, DSSAT estimates the
lowest yields for autumn-winter and the highest yields for winter-spring
(Fig. 5). The fact that modeled yields for each season follow the correct
pattern over the ten-year time period further indicates that DSSAT is
well-calibrated.

3.3. Model runs

To achieve our study objectives, three types of simulations were run
using DSSAT. For all three experiments, land surface and crop man-
agement parameters were held constant, but present day weather was
replaced with projected weather from the mid-century climate

Fig. 2. This figure depicts density plots for rainfall, minimum temperature, and
maximum temperature from the two weather datasets used in this analysis. The
pink area depicts values from the Agricultural Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA) climate forcing dataset
developed for the Agricultural Modeling Intercomparison Project (AgMIP)
(Ruane, Goldberg et al., 2015, Ruane, Winter et al., 2015), and blue areas de-
pict values from the Prediction of Worldwide Energy Resources (POWER) da-
tabase (Stackhouse, 2006). AgMERRA data was used in all model runs and to
derive future climate change scenarios, while POWER data was used to cali-
brate the model. These density plots show that the distributions for each dataset
are similar, such that the data can be used interchangeably. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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projections. First, we simulated yields using climate projections from
each GCM. These simulations held CO2 values to baseline levels, and
both RCP4.5 and 8.5 scenarios were run separately for each of the three
planting seasons. Next, we ran the same simulations, but replaced the
CO2 values for each RCP scenario with future CO2 concentration esti-
mates from the Coupled Model Intercomparison Project Phase 5

(CMIP5) (Taylor, Stougger, & Meehl, 2012). Lastly, we ran simulations
to understand future potential yields by turning off the feature in
DSSAT that models plant response to nitrogen and water stresses. Al-
though these model runs represent a counterfactual scenario, they were
performed to assess whether future yields could be improved by greater
water or nitrogen availability. By default in DSSAT, plant response to
water or nitrogen stress is modeled if the climate projections warrant it.
To be clear, this does not mean that the plant is forced to experience
stress, only that it will experience stress if available soil water or ni-
trogen is sufficiently low. For our final models, we re-ran the first two
simulations (i.e., how yields respond to future climate scenarios with
and without projected CO2 concentrations) without simulating plant
response to water or nitrogen stress. We were interested to see if an-
ticipated yield declines associated with increased temperatures could
be counteracted by different management practices. Specifically, we
investigated the importance of irrigation and fertilizer applications to
determine if increased water and nitrogen inputs could boost future
yields.

3.4. Calculating production totals

While DSSAT estimates yields per ha in Can Tho, we were also in-
terested in estimating total production across the entire municipality by
mid-century. To do this, we used previously published results on the
remote sensing-derived rice paddy area and number of annual harvests
for 2012 (Kontgis et al., 2015). To calculate the total production values,
we multiplied present-day and projected future yields by the total
harvested area of Can Tho. Here, total harvested area is the total area of
rice planted multiplied by the number of times it is harvested per year.
In 2012, triple-cropped fields comprised over 62,000 ha of total land
area (or> 66% of all rice) indicating that the total harvested area for
triple-cropped fields was approximately 186,000 ha. Double-cropped
fields were classified as> 29,000 ha (or, just under 32% of all rice),
indicating that total harvested area was>58,000 ha, and single-
cropped fields had a total area (and total harvested area) of about
1400 ha (1.5% of all rice). Accordingly, the amount of total harvested
area in Can Tho province is approximately 245,400 ha for all growing
seasons. While the remote sensing-based maps show where single-,
double-, and triple-cropped rice paddies are located, they do not reveal
when these seasons are cultivated. For example, a double-cropped field
might be cultivated during (A) winter-spring and autumn-winter

Table 1
A list of the 20 global circulation models (GCM) used in this analysis to project mid-century climate scenarios.

Model number Model name Model source

1 ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation, Australia and Bureau of Meteorology, Australia
2 bcc-csm1-1 Beijing Climate Centre, China Meteorological Administration
3 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China
4 CanESM2 Canadian Centre for Climate Modeling and Analysis
5 CCSM4 National Centre for Atmospheric Research, USA
6 CESM1-BGC National Science Foundation, Department of Energy, National Centre for Atmospheric Research, USA
7 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence,

Australia
8 GFDL-ESM2G National Oceanic and Atmospheric Association Geophysical Fluid Dynamics Laboratory, USA
9 GFDL-ESM2M National Oceanic and Atmospheric Association Geophysical Fluid Dynamics Laboratory, USA
10 HadGEM2-CC Met Office Hadley Centre, UK
11 HadGEM2-ES Met Office Hadley Centre with additional realizations contributed by Instituto Nacional de Pesquisas Espaciais, Brazil
12 inmcm4 Institute for Numerical Mathematics
13 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France
14 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France
15 MIROC5 Atmosphere and Ocean Research Institute at the University of Tokyo, National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
16 MIROC-ESM Atmosphere and Ocean Research Institute at the University of Tokyo, National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
17 MPI-ESM-LR Max Planck Institute for Meteorology, Germany
18 MPI-ESM-MR Max Planck Institute for Meteorology, Germany
19 MRI-CGCM3 Meteorological Research Institute, Japan
20 NorESM1-M Norwegian Climate Centre

Fig. 3. All future scenarios from global circulation models (GCMs) were esti-
mated with bias-corrected climate forcings, and the covariances between
maximum temperature, minimum temperature, and precipitation were main-
tained from baseline data. This figure illustrates this by plotting a single GCM
(ACCESS1-0) against the baseline AgMERRA data for RCP4.5. Projected max-
imum and minimum temperatures follow the same pattern as the baseline, but
are slightly higher, while projected precipitation values nearly align with the
baseline data. Note that all other GCMs were projected in a similar manner for
each of the mid-century RCP4.5 and RCP8.5 scenarios.
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seasons, (B) winter-spring and summer-autumn seasons, or (C) summer-
autumn and autumn-winter seasons. Since we cannot know for certain,
we average yields across the growing seasons to calculate total pro-
duction.

4. Results

4.1. Future climate scenarios

Compared to baseline climate data, mid-century Tmax and Tmin in-
creased during all seasons for both RCP scenarios, and rainfall increased
slightly for all seasons except summer-autumn (Fig. 6). To assess these
general trends, projected temperature and precipitation values were
averaged over all 20 GCMs for each RCP scenario. As expected, tem-
perature increases were greater for RCP8.5 compared to RCP4.5 for all
seasons, and Tmin increased more dramatically than Tmax. For example,
average Tmax increased 0.7–0.76 °C while average Tmin increased 0.82
and 0.91 °C from baseline across all seasons for RCP4.5. For RCP8.5,
average Tmax increased 1.21–1.27 °C across all seasons, but average Tmin

increased 1.33–1.43 °C. For both RCP scenarios, the summer-autumn
season is projected to experience the greatest changes to Tmin, and is
also projected to experience the greatest change to Tmax for RCP8.5
(winter-spring season is estimated to have the greatest change to Tmax

for RCP4.5). Changes to average precipitation are negligible for all
seasons, though in both RCP scenarios, small increases are projected for
the winter-spring (0.09mm day−1 for RCP4.5 and 0.084mm day−1 for
RCP8.5) and autumn-winter seasons (0.086mm day−1 for RCP4.5 and
0.29mm day−1 for RCP8.5). In contrast, small decreases are projected
for the summer-autumn season in both RCP scenarios (−0.003mm
day−1 for RCP4.5 and −0.011mm day−1 for RCP8.5).

4.2. CO2 fertilization effects

For all 20 GCMs, the model runs that used mid-century climate data
(2040–2069) and baseline CO2 values (i.e. no CO2 fertilization) pro-
duced lower yields compared to model runs using present day climate
(1981–2010) (Fig. 7). For both RCP4.5 and RCP8.5, the summer-au-
tumn season experienced the greatest variability in projections, with
total yield estimates ranging from around 4000 to 7500 kg/ha.

When estimated future CO2 values were incorporated into the model
runs, modeled yields increased across all seasons for all GCMs (Fig. 7).
Unlike the model runs with baseline CO2 values, models that

Table 2
The parameters used as input for management practices in DSSAT. These values were derived from interview field data gathered during March 2015.

Season Planting date Variety Planting
method

Density at
planting (plants
m−2)

Density at
emergence (plants
m−2)

Fertilization Irrigation

Dates (no. days
after planting)

Rates (kg ha−1) Dates (no. days
after planting)

Amounts
(mm)

N P K

Winter-spring November 18 IR64 Broadcast 250 150 10
25
45

20
40
40

24
16
–

10
10
20

5
25
35
45

30
35
40
45

Summer-autumn March 19 IR64 Broadcast 250 150 10
25
45

16
32
32

30
20
–

12
12
25

5
25
35
45

30
35
40
45

Autumn-winter July 20 IR64 Broadcast 250 150 10
25
45

16
32
32

30
20
–

12
12
25

5
25
35
45

30
35
40
45

Table 3
The soil properties used in DSSAT for all model runs. These data were chosen based on published studies on soil properties for the study area (Khuong et al., 2011;
Watanabe et al., 2009).

Clay (%) Silt (%) Stones (%) Organic carbon (%) pH Cation exchange capacity (cmol/kg) Total nitrogen (%)

45.4 54.5 0 1.34 5.0 4.5 0.15

Fig. 4. DSSAT was calibrated using the Prediction of Worldwide Energy
Resources (POWER) weather database (Stackhouse, 2006) and Vietnamese
agricultural census data (General Statistics Office of Vietnam, 2011a,b,c). Can
Tho province formed in 2004 when adjacent provinces split, hence calibration
begins at this time point.
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incorporate CO2 fertilization effects estimate that yields are highest for
the summer-autumn season, followed by the winter-spring season. With
CO2 fertilization, summer-autumn again has the greatest amount of
variability in yield estimates. For example, some estimated yields for
RCP4.5 summer-autumn rice paddy are over 1000 kg/ha higher than
the median baseline value, yet some outliers drop as low as 3000 kg/ha
below the median baseline yield. Yield increases related to CO2 ferti-
lization effects are greater for all GCMs in RCP8.5, with potential yields
exceeding 8000 kg/ha for the summer-autumn season.

Since there is often variability between the GCMs for a single season
and RCP scenario, it is useful to combine the projected yield estimates
from all 20 models to look at the differences between future and
baseline yields (Fig. 8). When all yields are averaged over all 20 GCMs,
several clear trends emerge. Without the simulated effects of CO2 fer-
tilization, yields across all seasons decline between present day climate
and RCP4.5 (∼200–300 kg ha−1), and decline again between RCP4.5
and RCP8.5 (∼200–300 kg ha−1) (Fig. 8, left side). When simulated
CO2 values are incorporated, the opposite trend occurs, with yields
increasing across all seasons from baseline to RCP4.5 and from RCP4.5
to RCP8.5 (Fig. 8, right side). Notably, potential yield increases with
CO2 fertilization are not as great as the losses estimated without CO2

fertilization. For example, with CO2 fertilization, average winter-spring
yields are only projected to increase by 100 kg ha−1 from baseline to
mid-century RCP4.5. This is smaller than the estimated loss of

300 kg ha−1 when CO2 fertilization is not simulated. In short, yield
estimates that account for CO2 fertilization are the most optimistic
realizations of the model.

For future yield estimates, the summer-autumn season has the po-
tential to change drastically since it is the most affected by CO2 (Fig. 9).
For RCP4.5, mid-century yield estimates are 13% higher on average
when CO2 fertilization is simulated compared to when it is not. This
value is nearly double the winter-spring season average percentage
difference (7%), and more than double the autumn-winter average
percentage difference (6%). The magnitude of change is greater for
RCP8.5, where summer-autumn yields are 23% higher on average when
CO2 fertilization is simulated compared to model runs when CO2 values
are held to baseline levels. For both the winter-spring season and the
autumn-winter season, yields are approximately 13% greater when CO2

fertilization effects are simulated compared to when they are not.

4.3. Effects on total production

Once the yield estimates are converted to production totals, the
average production in Can Tho is 1.67 million tons per year at baseline,
averaged across all three growing seasons. Clearly, production trends
will mirror yield trends, since the former is only scaling the latter by the
total harvested area of the province (246,845 ha). By mid-century, the
average total production of the province will decline to 1.59 and 1.55

Fig. 5. DSSAT was calibrated against census data for
the winter-spring and summer-autumn growing sea-
sons, 2004–2013. The Vietnamese government does
not provide census data on yields for the autumn-
winter season in Can Tho province, but during in-
terviews farmers stated that it was the lowest
yielding season. While the absolute values of yields
did not always correspond to census values, DSSAT
captured seasonal patterns well.

Fig. 6. For the RCP scenarios, all 20 global circula-
tion models are included to get average differences
between baseline and possible mid-century climate
values. These results indicate that temperatures in-
crease across all three seasons by roughly the same
amount, and that modeled future precipitation is
nearly equal to baseline values.
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million tons under RCP4.5 and RCP8.5 emissions scenarios, respec-
tively, when CO2 fertilization is not considered. However, when CO2

fertilization effects are simulated, the average total production in-
creases to 1.74 million tons and 1.79 million tons by mid-century under
RCP4.5 and RCP8.5, respectively.

4.4. Drivers of yield impacts

Upon discovering that yields are projected to decline without the
potential benefit of CO2 fertilization, we conducted a number of tests to
investigate what is driving yield changes. Temperature was the stron-
gest predictor of yields, which supports findings from other studies of
rice paddies (Peng et al., 2004). In linear regression models that con-
trolled for year-to-year differences in total seasonal solar radiation,
increasing Tmin and Tmax were both correlated with lower yields re-
gardless of whether baseline or projected CO2 values were used in the
model (Fig. 10). In other words, rising temperatures had negative im-
pacts on yields even if concurrent rises in CO2 have positive effects on
yields. For rising Tmax, this negative relationship is true for all seasons,
but rising Tmin is only associated with yield declines for winter-spring
and autumn-winter. To better understand this discrepancy, we looked
at correlations between Tmax and Tmin for all seasons (Fig. 11). These
variables are highly correlated for winter-spring and autumn-winter (R2

of 0.6 and 0.5, respectively), but not very well correlated for summer-
autumn (R2 of 0.2). The onset of monsoon season occurs during the
summer-autumn growing season, so weather during this period can be
volatile, which may explain the lower correlation between Tmax and
Tmin during the summer-autumn season. Tmax values are highest during
the summer-autumn season, but Tmin values are some of the lowest seen
during the year. Because of this, stressful temperatures are far more
likely to occur during the day than at night during the summer-autumn
season, so yield declines are much more correlated with hot daytime
temperatures than relatively cool nighttime temperatures.

4.5. Irrigation and fertilizer impacts on yields

All model runs discussed up to this point relate to climate change
effects on future yields. The final model simulations address how
management strategies could offset yield losses caused by rising tem-
peratures. When water and nitrogen are not limiting factors for rice
growth (e.g., the water stress and nitrogen stress simulators in DSSAT
were turned off), the variability in yield estimates increased across all
seasons and both RCP scenarios (Fig. 12). Again, when CO2 fertilization
was simulated, estimated yields from the GCMs were generally higher

Fig. 7. The distributions of yield values for each of the 20 GCMs (along the x-axis) over the mid-century time period (2040–2069) with and without CO2 fertilization
illustrate that yields are higher when CO2 fertilization is considered. The left two columns illustrate yields under the RCP4.5 scenario, while the right two columns
illustrate yields under the RCP8.5 scenario.

Fig. 8. Comparisons between baseline yield estimates and future ensemble
yield estimates derived from all 20 global circulation models for both the
RCP4.5 and RCP8.5 scenarios.
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than both baseline yields and estimated yields when CO2 fertilization
was not simulated. However, the key point from this analysis is that for
both RCP scenarios, eliminating water and nitrogen stress did not
compensate for the negative impacts of rising temperatures on yields.
Only the potential effects of CO2 had the ability to offset future tem-
perature-related yield declines in the model.

5. Discussion

As one of the most globally productive regions for rice, the
Vietnamese Mekong River Delta is particularly important for rice
markets, trade, and maintaining food stocks for the nearly three billion
people that consume this staple food item across the globe. However,
the agricultural systems in this area also face exacting challenges as
warming temperatures are expected to decrease crop yields, at the same
time that rising global populations will require more food. Additionally,
the livelihoods of those in the VMD are inextricably tied to rice farming,
and any changes to rice systems will affect the farmers as well. This
research uses data from farmers in Can Tho city, Vietnam, in conjunc-
tion with projected mid-century climate data to model how rice paddy
responds to warming temperatures and rising CO2, and whether chan-
ging management practices can boost yields. The results show that
without CO2 fertilization, rice paddy yields will decline by mid-century
by up to 5.5% under the RCP4.5 scenario and up to 8.6% under the
RCP8.5 scenario. In addition, the results suggest that increased irriga-
tion and fertilizer application cannot offset the losses caused by rising
temperatures.

Similar to other studies that compare crop response with and
without CO2 fertilization, this analysis indicates that yields increase
dramatically when simulated future CO2 values are incorporated into
the model. While this offers some hope that climate change could be a
net benefit to food systems, some research has cast doubt on how much
confidence scientists should put on this modeled yield boost (Long,
Ainsworth, Leakey, Nösberger, & Ort, 2006). In the past, modeled ef-
fects of CO2 fertilization have been based on decades-old enclosure
studies that can significantly overestimate how much rising CO2 con-
centrations will boost yields. However, the suite of CERES models es-
timate the effects of CO2 on crop function and yields by employing
findings from the Free Air Carbon Enrichment (FACE) open-air studies,
which provide a more realistic crop response to CO2 (Backland, Janetos,
& Schimel, 2008; Hoogenboom, J, & PW, 2012). Yet even the heavily
managed FACE plots cannot simulate the interactive effects of CO2

rising in conjunction with other atmospheric gases like ozone, the rise
of which is expected to lower future crop yields (Long et al., 2006).
While some of our model results indicate that yields could experience a
net increase by mid-century due to rising CO2 concentrations, there is

significant uncertainty that this will actually occur. Rather than relying
on the most optimistic projections, policy decisions related to food
production in the region should consider the full range of model out-
comes.

Currently, Can Tho averages a total production of 1.67 million tons
of rice annually, which is nearly 25% of total Vietnamese rice exports
(USDA Foreign Agricultural Service, 2015). Based on our models, rising
temperatures will cause total production to fall by about
70,000–120,000 tons of rice per year. Again, the effects of rising CO2

may compensate for these losses, but rising temperatures will still ne-
gatively impact rice yields.

One way to compensate for temperature-related losses is to transi-
tion fields that are currently double- or single-cropped to triple-cropped
fields. Doing so would add an additional 32,000 ha to the total har-
vested area of Can Tho city, or ∼218,000 tons of rice per year (as-
suming that no additional land is converted to rice). While this could
offset losses associated with climate change, it would also be highly
resource intensive and environmentally devastating if management
practices remain unchanged (Foley et al., 2011; Tilman et al., 2002).
Further, it is unclear whether fields that are currently double- or single-
cropped could be viably triple-cropped in the future. For example, if the
fields are flood-prone or have poor soil quality, increasing the number
of annual harvests may not even be possible. In addition, future changes
to resource allocation in the region may render more annual harvests
close to impossible. Given these challenges, there should be a strong
commitment to double-cropped rice paddies that focus on farming
during the most productive seasons.

Of the three rice-growing seasons, the summer-autumn season has
the greatest variability in nearly all model runs. Summer-autumn also
experiences the highest average Tmin and Tmax at present and in po-
tential future climate scenarios. These high temperatures could be ex-
ceeding the temperature threshold for rice, which would result in
highly variable yields that are lower on average than those produced in
winter-spring, which has the lowest Tmin and Tmax at baseline and in
future scenarios. If CO2 fertilization were to occur as modeled, the
variability of yields for the summer-autumn season could be worth the
risk since its yields stand to increase so much compared to baseline
(Fig. 9). However, if CO2 fertilization effects are less than projected, the
summer-autumn season is a risky time for farmers due to the high de-
gree of variability in future estimates and the potential for big yield
losses due to rising temperatures. Without the effects of CO2 fertiliza-
tion, average summer-autumn yields are projected to become the lowest
of the three seasons by mid-century for RCP4.5 and RCP8.5. Because of
this, farmers might consider focusing their efforts on winter-spring and
autumn-winter seasons, which are projected to elicit higher, more
stable yields.

Fig. 9. The average percentage changes from
baseline for all three seasons. For both RCP
scenarios, average mid-century yields are lower
than baseline when CO2 fertilization is not si-
mulated, while average mid-century yields are
higher than baseline when CO2 fertilization is
simulated. The average percent changes from
baseline are more dramatic for RCP8.5 com-
pared to RCP4.5 for all seasons, while the
summer-autumn season experiences the greatest
changes from baseline. For reference, average
baseline yields for winter-spring season are
6958.5 kg/ha, average baseline yields for
summer-autumn season are 6668.2 kg/ha, and
average baseline yields for autumn-winter
season are 6611.0 kg/ha.
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The control that the Vietnamese government exerts on all domestic
agricultural activities predicates any potential changes to rice paddy
yields that could be caused by climate change effects. Because rice is
such an important crop in terms of employment, diet, and exports, the
central government controls nearly all aspects of its production, and
since 1992 this has meant setting annual target export values (Van Ha,
Nguyen, Kompas, Che, & Trinh, 2015). Export goals are set by the
government as a way to protect the poorest populations in Vietnam
from higher rice prices, yet studies have shown that all income groups
would benefit from free trade (Van Ha et al., 2015). Because of this
policy, it is often more profitable for a rice farmer to let a field lie fallow

than to farm it during a given season. Further, by requiring that rice
exports meet a certain goal, farmers are given less freedom to diversify
their agricultural practices, which could hinder their ability to adapt to
a warming climate. As climate patterns shift, food production and rural
livelihoods will benefit if farmers are given more freedom to decide
what and when to plant.

Of course, broader geopolitics will also play a role in the food
production of the region. Though it was beyond the scope of this study
to investigate the impacts of dams along the Mekong, there is little
doubt that new construction will greatly impact agricultural activities
in the area (ICEM, 2010). The Laotian government has begun

Fig. 10. Linear regression models of changes in yield vs. temperature changes that control for solar radiation indicate that both higher minimum and maximum
temperatures are almost always correlated with lower yields for both (a) model runs that use baseline CO2 concentrations and (b) model runs that use projected CO2

concentrations. Summer-autumn minimum temperatures are a notable exception to this.
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construction on the Xayaburi dam, which will be the first dam on the
main stem of the Mekong outside of China. Ten other major dams are
either being built or planned on the Cambodian and Laotian stretches of
the river, which will add to China's seven functioning dams and five
dams under construction on the upper part of the Mekong. While dams
provide electricity generation and poverty alleviation, they also deplete
fish stocks and flood villages (Grumbine & Xu, 2011; ICEM, 2010; Ziv,
Baran, Nam, Rodriguez-Iturbe, & Levin, 2012). Water flow is expected
to fluctuate greatly, particularly during the dry season when flows have
already shown a declining trend (Lu & Siew, 2006). The dry season
corresponds to winter-spring rice paddy, which is currently the highest
yielding growing season with little variability projected under both RCP
scenarios (Fig. 7). With less water and less sediment reaching the delta,
rice yields will likely decline to a greater degree than this analysis
shows (Chapman, Darby, Hong, Tompkins, & Van, 2016). Given these
declines, many paddy farmers may switch to crops that require less
water, which may further decrease total rice production.

Compounding potential production losses associated with decreased
river flow, sea levels are projected to rise as the climate changes, which

could completely inundate paddy fields with salt water (Smajgl et al.,
2015). Though sluice and dyke construction in the Vietnamese Mekong
Delta has flourished since markets opened in the late 1980s, there is
evidence that these engineered landscapes increase flow velocity in the
canals, leading to bank erosion and increased risk of flooding (Le,
Nguyen, Wolanski, Tran, & Haruyama, 2007). Sea level rise is expected
to not only flood coastal areas of thedelta, but also result in longer
flooding periods in the central part of delta, near the study area for this
paper (Van et al., 2012; Wassmann et al., 2004). Many farmers in the
region cope with this change by also raising fish in their paddy fields,
which results in a higher net income compared to farmers who solely
plant rice (Berg, 2002; Phong et al., 2007). Livelihood diversification
such as this is integral for the population of the delta to adapt to a
changing landscape and climate. Rice production losses will need to be
offset by expanding rice paddy into other regions or evolving tech-
nology that can keep paddies flourishing in southern Vietnam.

Rice paddies in the Mekong River Delta, and consequently the
farmers who tend them, are facing potential future threats to produc-
tion due to both climatic and geopolitical changes. Because of this,

Fig. 11. Temperatures are correlated for both winter-spring and autumn-winter seasons, but the correlation is weaker for the summer-autumn season since the onset
of the monsoon occurs during this season.

Fig. 12. To examine how management practices could compensate for yield losses in future scenarios (when CO2 fertilization is not simulated), all DSSAT model runs
were conducted again without water stress simulated. This was done to determine whether yield losses were due to water stress, which could possibly be rectified
with increased irrigation, or to some other factor. Even without any simulated water stress on the rice plant, this figure shows that the distribution of yields are
generally lower than baseline across all seasons and both RCP scenarios (4.5 and 8.5) without CO2 fertilization, and higher than baseline with CO2 fertilization.
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farmers are confronted with a double exposure of dealing with not only
the impacts of climate change but also the consequences of globaliza-
tion (O'Brien and Leichenko, 2000). Neither biophysical factors nor the
political ecology of the region alone can fully explain how rice pro-
duction might change in the future. Both components must be con-
sidered together in order to understand the region's potential future. In
this paper, we focused on the climatic piece of the puzzle, but we also
point to other important socio-political factors that must be taken into
account. It is likely that adaptations by seeds, farmers, and governments
will all be necessary to ensure the productivity of rice in southern
Vietnam and beyond.

6. Conclusion

Scientists, governments, and land-use planners face an immense
challenge: we must find solutions to feed a rapidly growing global
population while protecting our environment and the ecosystem goods
and services it provides. This research illustrates the potential impacts
on rice paddy yields due to climate change by mid-century in the
Vietnamese Mekong Delta, with Can Tho as a case study for the region.
Using field-collected data on land surface characteristics and manage-
ment practices in conjunction with projected climate data for two dif-
ferent mid-century emission scenarios and 20 GCMs, we simulated rice
production specifically for our study area. We found that yields de-
crease for all three growing seasons and all 20 GCMs for both future
climate scenarios when CO2 fertilization is not considered, but yields
generally increase when CO2 fertilization is taken into account.
Notably, the temperature-related yield loss that is estimated for mid-
century cannot be compensated for with greater inputs of water or ni-
trogen, indicating that altered management practices may not be able to
offset losses. These losses will be compounded if sea level rise inundates
coastal rice farms, or if upstream dams result in more variable or
lowered river flow, and if farmers are not given more flexibility to adapt
their agricultural practices. Because this region grows so much of the
world's rice and the local community relies so strongly on rice farming,
these agro-ecosystems need to be monitored so that paddy production
and livelihoods are not lost due to future change.
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