CURRICULUM VITAE

Project leader

1. Full name: Nguyen Huu	Chiem			
2. Date of birth: 12/09/196	51	3. Gender: Male		
 4. Title (<i>Prof., Assoc. Prof., Educational degree (PhD)</i> 5. Position: Senior lecturer 		Year confered: 2004 Year obtained: 1994		
6. Home address: 91A/3 An	Binh ward Ninh Kie	u district. Cantho city	Vietn	am
7. Telephone number: Mobile phone: 0084 91815 Fax:0084 71 730 392 E-mail: nhchiem@ctu.edu	81942			
 8. Name of institution: Colle Address: Department of E City, Vietnam Telephone number: 084 7 Fax: 0 84 7103 831 068 E-mail: <u>kmttntn@ctu.edu</u> 	nvironmental Science 7103 830635		•	-
9. Educational profile				
Degree	Educational institution	Specialization		Graduation year
BSc	Cantho University	Agronomy 19		83
MSc	Kyoto University	0 01		91
PhD	Kyoto University	Agro-ecological environment and Landuse	vironment and	
10. Job records ¹	'	·		·
Duration (from to)	Job title/posit			Office address
From 1983 to 1988	Lecturer	Cantho Unive	Cantho University Faculty of Agriculture, C University	
From 1989 to 1994	PhD candidate	andidate Kyoto Universit		Faculty of Agriculture, Kyoto University
From 1995 to 2007	Head of Departme	nt Cantho University	6	
From 2008 to 2012	Vice Dean, Head of Department	of Cantho Unive	Cantho University College Environ	

¹ Full-time and part-time scientific works

From 2013 to now		Senior lecturer		Cantho University		Natural Resources, Cantho University College of Environment and Natural Resources, Cantho University
11. Pu	blications relevant to the	e project within the	past 5	years		
No.	Publication title	Place published	Ye	ar published		Authors
1	Human factor and tidal influences on water quality of urban river in Can Tho, a main city of the Mekong Delta, Vietnam.	Environmental Monitoring and	2014	4	Co	-author
2	Enhancing biogas production by supplementing rice straw	Journal of Science and Technology, Vietnamese Academy of Science and Technology	2014	4	Co	-author
3	Estimated quantity of rice straw its use in some provinces in the Mekong delta region	Journal of Science and Technology, Vietnamese Academy of Science and Technology	2014	4	Co	-author
4	Evaluation the possibility of using rice straw and water hyacinth in the semi- continuous anaerobic fermentation – the application on farm scale polyethylene biogas digesters	Scientific Journal of Cantho University	2014	4	Co	-author
5	Biogas production from rice straw and water hyacinth: effect of size	Scientific Journal of Cantho University	1 2014 Co-author		-author	
6	Semi-continous anaerobic co-digestion of big manure with rice straw and water hyacinth	Scientific Journal of Cantho University	2014	4	Co	-author
7	Rice straw mangement	Tropical	2014	4	Co	-author

	by farmers in a triple rice production system in the Mekong delta Vietnam	Agriculture development		
8	Emission reduction and financial feasibility evaluation of a household biogas CDM project in Vietnam	Irrigation, Drainage and Rural Engineering Journal	2014	C0-author
9	Greenhouse gas emissions derived from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the	Soil Science and Plant Nutrition	2015	Co-author
10	"Reduction of Greenhouse Gas Emissions in Vietnam through Introduction of a Proper Technical Support System for Domestic Biogas Digesters.	Journal of Sustainable Development .	2015	Co-author
11	Greenhouse Gas Emissions from Rice Straw Burning and Straw-Mushroom Cultivation in a Triple Rice Cropping System in the Mekong Delta	Soil Science and Plant Nutrition	2016	Co-author
12	Rice cultivation reduces methane emissions in high- emitting paddies". F1000Research. (2018):	F1000 Research	2018	Co-author
13	Effects of different levels of biochar on methane, carbon dioxide production and digestibility of para grass (<i>Brachiaria</i> <i>mutica</i>) in in vitro incubation".	Can Tho University Journal of Science, special issue: Agriculture	2018	Co-author
14	Methane emission in triple rice cropping:	F1000 esearch	2019	Co-author

	patterns and a for reduction	method			
15	Avariable-tim fixed-rate app of cattle bioga effluent to rico leaf color chan microcosm experiments in Vietnam	lication as e using a rt:	Soil Science and Plant Nutrition	2019	Co-auther
16	Rice Straw: A Alternative fo Energy Gener by Anaerobic Digestion to F Manure: Environmenta Governance a Strategies for Sustainability Lower Mekon Basin	r ation Co- 'ig l nd in the	Water and Power	2019	Co-author
		/program	s participating or	leading relevant to) the field of study within the
Ti proje	t 5 years tle of the ect/program leading		uration n to)	Date completed and brief description of results	
impact and ser system provine	y on nmental s of full-dyke ni-dyke in An Giang ce, Mekong Vietnam	From 2	2013 to 2016	Comlpleted	Provincial collaboration
2. Rura Develo on clea	2. Rural Development based on clean develoment mechanism-CDM		2008 - 2015	Completed	JIRCAS-CTU collaboration
produc from w	3. Sustainable production of biogas from waste rice straw project		20013 - 2017	Completed	DANIDA-CTU Collaboration
4. Sustainable application of		From	2016-2019	Completed	JICA-CTU: MODEL JOINT RESEARCH

111/1/10/01	or from anosa			ΤΡΟΙΕΟΤ
	ar from green			PROJECT
	ass to mitigate			
-	house gases			
	ion from paddy			
	and to			
-	ve soil ecology			
in the	Mekong Delta			
	o study changes of	From 2017-2020	On going	ODA project (JICA-
	ne farming			CTU)
•	ems to support			
	ination of			
-	itants added to			
	environment			
	uding GHG)	D 4 ²	D-4	0-4
	Fitle of the	Duration (from to)	Date completed and brief description of	Category (national, ministry,
	ject/program	<i>()'0''' 10)</i>	results	institutional, collaborative
pa	articipating		i Upuility	etc.)
			esearch results/technologie	
study No.	Title of the		to society/industry (if any) escription of the	Duration of impact
110.	publication/proje		/technology transfer	Duration of impact
	program/resear		, scales, users, etc.)	
	result/technolog		, seares, asers, erc.)	
1	<i>Effect of applicat</i>	*	ed that ammonia emission	2011
1				2011
of biogas-effluenct		nct from urea treat	tment (36mgN/not) was	
	0 00		tment (36mgN/pot) was	
	charcoal	to higher than that	t of mangrove(14mgNH ₃	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131	nt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal	
	charcoal	to higher than tha ion /pot) or (13 materials. As a	nt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131 materials. As a salad yield (85	tt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment	tt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore,	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131 materials. As a salad yield (85 urea treatment biogas effluent	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131 materials. As a salad yield (85 urea treatment biogas effluent fertilization, as	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po	tt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131 materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (13) materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb r	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own	
	charcoal ammonnia emiss	to higher than tha ion /pot) or (131 materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal	tt of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own	
2	charcoal ammonnia emiss and salad growth	to higher than tha ion /pot) or (131 materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization.	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for	2012
2	charcoal ammonnia emiss	to higher than tha ion /pot) or (13) materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization.	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitre	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb	to higher than tha ion /pot) or (13) materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitre effectively at 30	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus 20g charcoal and 6 litres	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa	to higher than tha ion /pot) or (13) materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitro ing effectively at 30 ste of wastewa	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus D0g charcoal and 6 litres ater. Post-absorption	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa water to gr	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitra ing effectively at 30 ste of wastewa ow Melaleuca and	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing ollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus 00g charcoal and 6 litres nter. Post-absorption Rhizophora charcoal was	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa	to higher than tha ion /pot) or (13) materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitre ing effectively at 30 ste of wastewa ow Melaleuca and a considered as	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing bilution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus D0g charcoal and 6 litres nter. Post-absorption Rhizophora charcoal was effective fertilizer for	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa water to gr	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitra ing effectively at 30 ste of wastewa ow Melaleuca and considered as mustard green.	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing ollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus Og charcoal and 6 litres iter. Post-absorption Rhizophora charcoal was effective fertilizer for s' growth rather than	2012
2	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa water to gr	to higher than tha ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal po make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitra ing effectively at 30 ste of wastewa ow Melaleuca and considered as mustard green. inorganic fertiliz	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing pollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus D0g charcoal and 6 litres nter. Post-absorption Rhizophora charcoal was effective fertilizer for s' growth rather than zer.	2012-2016
	charcoal ammonnia emiss and salad growth Using Rhizoph and Melale charcoal absorb effluent biogas wa water to gr	to higher than that ion /pot) or (13n materials. As a salad yield (85 urea treatment biogas effluent fertilization, as environmtal pot make charcoal it to absorb n biogas waste fertilization. ora Melaleuca and uca absorbed nitro ing effectively at 30 ste of wastewa ow Melaleuca and considered as mustard green. inorganic fertiliz	at of mangrove(14mgNH ₃ mgNH ₃ /pot) charcoal result, the charcoal gave g/pot) higher than that of t (32g/pot). Therefore, charcoal can be used for s well as for reducing ollution. Farmers can for themselves and using nutrient from their own water effluent for d Rhizophora charcoal ogen and phosphorus Og charcoal and 6 litres iter. Post-absorption Rhizophora charcoal was effective fertilizer for s' growth rather than	

l	11- · · ·		
	develoment mechanism-CDM	districts, Cantho city. Vietnam. Through the project, 40 smark farmers have been trained on biogas digester construction by CTU scientists. They can help to tranfer their knowledge about biogas digester system to other farmers in the community who want to establish the biogas digester successfully.	
4	Properties of Biochars Prepared from Local Biomass in the Mekong Delta, Vietnam.	Physical and chemical characteristics of biochars prepared from rice husk, melalueca, bamboo and water hyacinth were determined. These biochars could be used for further studies to treat environment pollution and GHG emission	2018
5	Rice plant reduce methane emissions in high-emitting paddies	We found that the rice, in fact, suppressed overall methane emissions in high-emitting paddies. The emission reductions increased with the growth of rice to the maximum tillering stage, then decreased after the heading stage, and finally recoverd.	July, 2019
6	Methane emissions in triple rice cropping: patterns and a method for reductionc	The total emission in a crop season doubled in the second crop, tripled in the third crop, and reset after the annual natural flood of the Mekong river. The emission peaks occurred around 0 to 3 weeks after starting irrigation, then gradually decreased. This suggests that methane was generated by the soil organic matter, because the small rice plants provide little carbon for methanogenesis.	Sep. 2019
7	Effects of Rice Husk Biochar and Calcium Amendment on Remediation of Saline Soil from Rice-shrimp Cropping System in Vietnamese Mekong Delta	Biochar enhanced significantly drainage speed by 4 times compared to the control without biochar application. After leaching, exchangeable sodium percentage (ESP) in the soils was significantly lower in biochar treatments than in the control. Some other chemical indicators (K:Na and Ca:Na ratios) were also higher in biochar treatments. Although both biochars effectively removed salts from the saline soil, biochar with a lower Na+ adsorption capacity, a lower surface area and a higher amount of salts performed better in removing Na+ from soil. Combined application of biochar and CaO at low dose	2019

	was more effective in improving soil properties related to Na+ leaching and ESP.	
14. Li	ist of scientific awards relevant to the field of study (<i>if any</i>)	
No.	Award title and brief description	Year awarded
1	Project participants and designated operational entity. Approval of voluntary participation in the proposed CDM project activity, and it contributes to sustainable development in Vietnam by Ministry of Natural Resources and Environment of Vietnam	2012
2		
•••		

Date: October 16, 2019

HEAD OF THE INSTITUTION

(Sign and seal)

PROJECT LEADER/MEMBER (Sign)